home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_2 / 2-4-1.tut < prev    next >
Unknown  |  1996-07-15  |  3.6 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | be 0d 00 00 a0 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 32 2e 34 20 20 54 72 61 |Section |2.4 Tra|
|00000020| 6e 73 6c 61 74 69 6f 6e | 73 20 61 6e 64 20 43 6f |nslation|s and Co|
|00000030| 6d 62 69 6e 61 74 69 6f | 6e 73 0d 0b 00 46 6f 72 |mbinatio|ns...For|
|00000040| 20 6d 6f 72 65 20 70 72 | 61 63 74 69 63 65 3a 0d | more pr|actice:.|
|00000050| 0a 00 0d 0a 00 20 20 20 | 20 20 10 32 2d 34 2d 33 |..... | .2-4-3|
|00000060| 0e 78 32 2d 34 0e 45 78 | 65 72 63 69 73 65 73 0f |.x2-4.Ex|ercises.|
|00000070| 0d 0a 00 20 20 20 20 20 | 10 32 2d 34 2d 32 0e 65 |... |.2-4-2.e|
|00000080| 32 2d 34 0e 47 75 69 64 | 65 64 20 45 78 65 72 63 |2-4.Guid|ed Exerc|
|00000090| 69 73 65 73 0f 0d 0a 00 | 0d 0a 00 54 6f 70 69 63 |ises....|...Topic|
|000000a0| 73 20 66 6f 72 20 65 78 | 70 6c 6f 72 61 74 69 6f |s for ex|ploratio|
|000000b0| 6e 3a 0d 0a 00 0d 0a 00 | 20 20 20 20 20 0e 73 32 |n:......| .s2|
|000000c0| 2d 34 2d 31 0e 56 65 72 | 74 69 63 61 6c 20 61 6e |-4-1.Ver|tical an|
|000000d0| 64 20 48 6f 72 69 7a 6f | 6e 74 61 6c 20 53 68 69 |d Horizo|ntal Shi|
|000000e0| 66 74 73 0f 0d 0a 00 20 | 20 20 20 20 0e 73 32 2d |fts.... | .s2-|
|000000f0| 34 2d 32 0e 52 65 66 6c | 65 63 74 69 6f 6e 73 20 |4-2.Refl|ections |
|00000100| 69 6e 20 74 68 65 20 43 | 6f 6f 72 64 69 6e 61 74 |in the C|oordinat|
|00000110| 65 20 41 78 65 73 0f 0d | 0a 00 20 20 20 20 20 0e |e Axes..|.. .|
|00000120| 73 32 2d 34 2d 33 0e 52 | 69 67 69 64 20 61 6e 64 |s2-4-3.R|igid and|
|00000130| 20 4e 6f 6e 72 69 67 69 | 64 20 54 72 61 6e 73 66 | Nonrigi|d Transf|
|00000140| 6f 72 6d 61 74 69 6f 6e | 73 0f 0d 0a 00 20 20 20 |ormation|s.... |
|00000150| 20 20 0e 73 32 2d 34 2d | 34 0e 41 72 69 74 68 6d | .s2-4-|4.Arithm|
|00000160| 65 74 69 63 20 43 6f 6d | 62 69 6e 61 74 69 6f 6e |etic Com|bination|
|00000170| 73 20 6f 66 20 46 75 6e | 63 74 69 6f 6e 73 0f 0d |s of Fun|ctions..|
|00000180| 0a 00 20 20 20 20 20 0e | 73 32 2d 34 2d 35 0e 43 |.. .|s2-4-5.C|
|00000190| 6f 6d 70 6f 73 69 74 69 | 6f 6e 20 6f 66 20 46 75 |ompositi|on of Fu|
|000001a0| 6e 63 74 69 6f 6e 73 0f | 0d 0a 00 53 65 63 74 69 |nctions.|...Secti|
|000001b0| 6f 6e 20 32 2e 34 20 20 | 54 72 61 6e 73 6c 61 74 |on 2.4 |Translat|
|000001c0| 69 6f 6e 73 20 61 6e 64 | 20 43 6f 6d 62 69 6e 61 |ions and| Combina|
|000001d0| 74 69 6f 6e 73 0d 0b 00 | 20 20 20 20 20 20 20 20 |tions...| |
|000001e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000001f0| 12 31 56 65 72 74 69 63 | 61 6c 20 61 6e 64 20 48 |.1Vertic|al and H|
|00000200| 6f 72 69 7a 6f 6e 74 61 | 6c 20 53 68 69 66 74 73 |orizonta|l Shifts|
|00000210| 12 30 0d 0a 00 0d 0b 00 | 4c 65 74 20 11 33 63 20 |.0......|Let .3c |
|00000220| 11 31 62 65 20 61 20 70 | 6f 73 69 74 69 76 65 20 |.1be a p|ositive |
|00000230| 72 65 61 6c 20 6e 75 6d | 62 65 72 2e 20 20 56 65 |real num|ber. Ve|
|00000240| 72 74 69 63 61 6c 20 61 | 6e 64 20 68 6f 72 69 7a |rtical a|nd horiz|
|00000250| 6f 6e 74 61 6c 20 73 68 | 69 66 74 73 20 69 6e 20 |ontal sh|ifts in |
|00000260| 74 68 65 20 67 72 61 70 | 68 0d 0a 00 6f 66 20 11 |the grap|h...of .|
|00000270| 33 79 20 11 31 3d 20 11 | 33 66 11 31 28 11 33 78 |3y .1= .|3f.1(.3x|
|00000280| 11 31 29 20 61 72 65 20 | 72 65 70 72 65 73 65 6e |.1) are |represen|
|00000290| 74 65 64 20 61 73 20 66 | 6f 6c 6c 6f 77 73 2e 0d |ted as f|ollows..|
|000002a0| 0a 00 0d 0b 00 31 2e 20 | 20 56 65 72 74 69 63 61 |.....1. | Vertica|
|000002b0| 6c 20 73 68 69 66 74 20 | 11 33 63 20 11 31 75 6e |l shift |.3c .1un|
|000002c0| 69 74 73 20 12 31 75 70 | 77 61 72 64 12 30 3a 20 |its .1up|ward.0: |
|000002d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000002e0| 20 20 20 11 33 68 11 31 | 28 11 33 78 11 31 29 20 | .3h.1|(.3x.1) |
|000002f0| 3d 20 11 33 66 11 31 28 | 11 33 78 11 31 29 20 2b |= .3f.1(|.3x.1) +|
|00000300| 20 11 33 63 0d 0a 00 0d | 0b 00 11 31 32 2e 20 20 | .3c....|...12. |
|00000310| 56 65 72 74 69 63 61 6c | 20 73 68 69 66 74 20 11 |Vertical| shift .|
|00000320| 33 63 20 11 31 75 6e 69 | 74 73 20 12 31 64 6f 77 |3c .1uni|ts .1dow|
|00000330| 6e 77 61 72 64 12 30 3a | 20 20 20 20 20 20 20 20 |nward.0:| |
|00000340| 20 20 20 20 20 20 20 20 | 20 20 11 33 68 11 31 28 | | .3h.1(|
|00000350| 11 33 78 11 31 29 20 3d | 20 11 33 66 11 31 28 11 |.3x.1) =| .3f.1(.|
|00000360| 33 78 11 31 29 20 2d 20 | 11 33 63 0d 0a 00 0d 0b |3x.1) - |.3c.....|
|00000370| 00 11 31 33 2e 20 20 48 | 6f 72 69 7a 6f 6e 74 61 |..13. H|orizonta|
|00000380| 6c 20 73 68 69 66 74 20 | 11 33 63 20 11 31 75 6e |l shift |.3c .1un|
|00000390| 69 74 73 20 74 6f 20 74 | 68 65 20 12 31 72 69 67 |its to t|he .1rig|
|000003a0| 68 74 12 30 3a 20 20 20 | 20 20 20 20 20 20 20 20 |ht.0: | |
|000003b0| 20 11 33 68 11 31 28 11 | 33 78 11 31 29 20 3d 20 | .3h.1(.|3x.1) = |
|000003c0| 11 33 66 11 31 28 11 33 | 78 20 11 31 2d 20 11 33 |.3f.1(.3|x .1- .3|
|000003d0| 63 11 31 29 0d 0a 00 0d | 0b 00 34 2e 20 20 48 6f |c.1)....|..4. Ho|
|000003e0| 72 69 7a 6f 6e 74 61 6c | 20 73 68 69 66 74 20 11 |rizontal| shift .|
|000003f0| 33 63 20 11 31 75 6e 69 | 74 73 20 74 6f 20 74 68 |3c .1uni|ts to th|
|00000400| 65 20 12 31 6c 65 66 74 | 12 30 3a 20 20 20 20 20 |e .1left|.0: |
|00000410| 20 20 20 20 20 20 20 20 | 11 33 68 11 31 28 11 33 | |.3h.1(.3|
|00000420| 78 11 31 29 20 3d 20 11 | 33 66 11 31 28 11 33 78 |x.1) = .|3f.1(.3x|
|00000430| 20 11 31 2b 20 11 33 63 | 11 31 29 0d 0a 00 53 65 | .1+ .3c|.1)...Se|
|00000440| 63 74 69 6f 6e 20 32 2e | 34 20 20 54 72 61 6e 73 |ction 2.|4 Trans|
|00000450| 6c 61 74 69 6f 6e 73 20 | 61 6e 64 20 43 6f 6d 62 |lations |and Comb|
|00000460| 69 6e 61 74 69 6f 6e 73 | 0d 0b 00 20 20 20 20 20 |inations|... |
|00000470| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000480| 20 20 12 31 52 65 66 6c | 65 63 74 69 6f 6e 73 20 | .1Refl|ections |
|00000490| 69 6e 20 74 68 65 20 43 | 6f 6f 72 64 69 6e 61 74 |in the C|oordinat|
|000004a0| 65 20 41 78 65 73 12 30 | 0d 0a 00 0d 0b 00 52 65 |e Axes.0|......Re|
|000004b0| 66 6c 65 63 74 69 6f 6e | 73 2c 20 69 6e 20 74 68 |flection|s, in th|
|000004c0| 65 20 63 6f 6f 72 64 69 | 6e 61 74 65 20 61 78 65 |e coordi|nate axe|
|000004d0| 73 2c 20 6f 66 20 74 68 | 65 20 67 72 61 70 68 20 |s, of th|e graph |
|000004e0| 6f 66 20 11 33 79 20 11 | 31 3d 20 11 33 66 11 31 |of .3y .|1= .3f.1|
|000004f0| 28 11 33 78 11 31 29 20 | 61 72 65 20 72 65 70 72 |(.3x.1) |are repr|
|00000500| 65 73 65 6e 74 65 64 0d | 0a 00 61 73 20 66 6f 6c |esented.|..as fol|
|00000510| 6c 6f 77 73 2e 0d 0a 00 | 0d 0b 00 31 2e 20 20 12 |lows....|...1. .|
|00000520| 31 52 65 66 6c 65 63 74 | 69 6f 6e 20 69 6e 20 74 |1Reflect|ion in t|
|00000530| 68 65 20 11 33 78 11 31 | 2d 61 78 69 73 12 30 3a |he .3x.1|-axis.0:|
|00000540| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000550| 20 20 11 33 68 11 31 28 | 11 33 78 11 31 29 20 3d | .3h.1(|.3x.1) =|
|00000560| 20 2d 11 33 66 11 31 28 | 11 33 78 11 31 29 0d 0a | -.3f.1(|.3x.1)..|
|00000570| 00 0d 0b 00 32 2e 20 20 | 12 31 52 65 66 6c 65 63 |....2. |.1Reflec|
|00000580| 74 69 6f 6e 20 69 6e 20 | 74 68 65 20 11 33 79 11 |tion in |the .3y.|
|00000590| 31 2d 61 78 69 73 12 30 | 3a 20 20 20 20 20 20 20 |1-axis.0|: |
|000005a0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 68 11 31 | | .3h.1|
|000005b0| 28 11 33 78 11 31 29 20 | 3d 20 11 33 66 11 31 28 |(.3x.1) |= .3f.1(|
|000005c0| 2d 11 33 78 11 31 29 0d | 0a 00 53 65 63 74 69 6f |-.3x.1).|..Sectio|
|000005d0| 6e 20 32 2e 34 20 20 54 | 72 61 6e 73 6c 61 74 69 |n 2.4 T|ranslati|
|000005e0| 6f 6e 73 20 61 6e 64 20 | 43 6f 6d 62 69 6e 61 74 |ons and |Combinat|
|000005f0| 69 6f 6e 73 0d 0b 00 48 | 6f 72 69 7a 6f 6e 74 61 |ions...H|orizonta|
|00000600| 6c 20 73 68 69 66 74 73 | 2c 20 76 65 72 74 69 63 |l shifts|, vertic|
|00000610| 61 6c 20 73 68 69 66 74 | 73 2c 20 61 6e 64 20 72 |al shift|s, and r|
|00000620| 65 66 6c 65 63 74 69 6f | 6e 73 20 61 72 65 20 12 |eflectio|ns are .|
|00000630| 31 72 69 67 69 64 12 30 | 20 74 72 61 6e 73 66 6f |1rigid.0| transfo|
|00000640| 72 6d 61 74 69 6f 6e 73 | 0d 0a 00 62 65 63 61 75 |rmations|...becau|
|00000650| 73 65 20 74 68 65 20 62 | 61 73 69 63 20 73 68 61 |se the b|asic sha|
|00000660| 70 65 20 6f 66 20 61 20 | 67 72 61 70 68 20 69 73 |pe of a |graph is|
|00000670| 20 75 6e 63 68 61 6e 67 | 65 64 2e 20 20 54 68 65 | unchang|ed. The|
|00000680| 73 65 20 74 72 61 6e 73 | 6c 61 74 69 6f 6e 73 20 |se trans|lations |
|00000690| 6f 6e 6c 79 20 0d 0a 00 | 63 68 61 6e 67 65 20 74 |only ...|change t|
|000006a0| 68 65 20 70 6f 73 69 74 | 69 6f 6e 20 6f 66 20 74 |he posit|ion of t|
|000006b0| 68 65 20 67 72 61 70 68 | 20 69 6e 20 74 68 65 20 |he graph| in the |
|000006c0| 11 33 78 79 11 31 2d 70 | 6c 61 6e 65 2e 0d 0a 00 |.3xy.1-p|lane....|
|000006d0| 0d 0a 00 41 20 12 31 6e | 6f 6e 72 69 67 69 64 12 |...A .1n|onrigid.|
|000006e0| 30 20 74 72 61 6e 73 66 | 6f 72 6d 61 74 69 6f 6e |0 transf|ormation|
|000006f0| 20 69 73 20 6f 6e 65 20 | 74 68 61 74 20 63 61 75 | is one |that cau|
|00000700| 73 65 73 20 61 20 64 69 | 73 74 6f 72 74 69 6f 6e |ses a di|stortion|
|00000710| 20 2d 2d 20 61 20 63 68 | 61 6e 67 65 20 69 6e 20 | -- a ch|ange in |
|00000720| 74 68 65 20 0d 0a 00 73 | 68 61 70 65 20 6f 66 20 |the ...s|hape of |
|00000730| 74 68 65 20 6f 72 69 67 | 69 6e 61 6c 20 67 72 61 |the orig|inal gra|
|00000740| 70 68 2e 20 20 46 6f 72 | 20 69 6e 73 74 61 6e 63 |ph. For| instanc|
|00000750| 65 2c 20 61 20 6e 6f 6e | 72 69 67 69 64 20 74 72 |e, a non|rigid tr|
|00000760| 61 6e 73 66 6f 72 6d 61 | 74 69 6f 6e 20 6f 66 20 |ansforma|tion of |
|00000770| 74 68 65 20 0d 0a 00 67 | 72 61 70 68 20 6f 66 20 |the ...g|raph of |
|00000780| 11 33 79 20 11 31 3d 20 | 11 33 66 11 31 28 11 33 |.3y .1= |.3f.1(.3|
|00000790| 78 11 31 29 20 69 73 20 | 72 65 70 72 65 73 65 6e |x.1) is |represen|
|000007a0| 74 65 64 20 62 79 20 11 | 33 79 20 11 31 3d 20 11 |ted by .|3y .1= .|
|000007b0| 33 63 66 11 31 28 11 33 | 78 11 31 29 2c 20 77 68 |3cf.1(.3|x.1), wh|
|000007c0| 65 72 65 20 74 68 65 20 | 74 72 61 6e 73 66 6f 72 |ere the |transfor|
|000007d0| 6d 61 74 69 6f 6e 20 69 | 73 20 61 20 0d 0a 00 12 |mation i|s a ....|
|000007e0| 31 76 65 72 74 69 63 61 | 6c 20 73 74 72 65 74 63 |1vertica|l stretc|
|000007f0| 68 12 30 20 69 66 20 11 | 33 63 20 11 31 3e 20 31 |h.0 if .|3c .1> 1|
|00000800| 20 61 6e 64 20 61 20 12 | 31 76 65 72 74 69 63 61 | and a .|1vertica|
|00000810| 6c 20 73 68 72 69 6e 6b | 12 30 20 69 66 20 30 20 |l shrink|.0 if 0 |
|00000820| 3c 20 11 33 63 20 11 31 | 3c 20 31 2e 0d 0a 00 53 |< .3c .1|< 1....S|
|00000830| 65 63 74 69 6f 6e 20 32 | 2e 34 20 20 54 72 61 6e |ection 2|.4 Tran|
|00000840| 73 6c 61 74 69 6f 6e 73 | 20 61 6e 64 20 43 6f 6d |slations| and Com|
|00000850| 62 69 6e 61 74 69 6f 6e | 73 0d 0b 00 4a 75 73 74 |bination|s...Just|
|00000860| 20 61 73 20 74 77 6f 20 | 72 65 61 6c 20 6e 75 6d | as two |real num|
|00000870| 62 65 72 73 20 63 61 6e | 20 62 65 20 63 6f 6d 62 |bers can| be comb|
|00000880| 69 6e 65 64 20 62 79 20 | 74 68 65 20 6f 70 65 72 |ined by |the oper|
|00000890| 61 74 69 6f 6e 73 20 6f | 66 20 61 64 64 69 74 69 |ations o|f additi|
|000008a0| 6f 6e 2c 20 0d 0a 00 73 | 75 62 74 72 61 63 74 69 |on, ...s|ubtracti|
|000008b0| 6f 6e 2c 20 6d 75 6c 74 | 69 70 6c 69 63 61 74 69 |on, mult|iplicati|
|000008c0| 6f 6e 2c 20 61 6e 64 20 | 64 69 76 69 73 69 6f 6e |on, and |division|
|000008d0| 20 74 6f 20 66 6f 72 6d | 20 6f 74 68 65 72 20 72 | to form| other r|
|000008e0| 65 61 6c 20 6e 75 6d 62 | 65 72 73 2c 20 74 77 6f |eal numb|ers, two|
|000008f0| 0d 0a 00 66 75 6e 63 74 | 69 6f 6e 73 20 63 61 6e |...funct|ions can|
|00000900| 20 62 65 20 63 6f 6d 62 | 69 6e 65 64 20 74 6f 20 | be comb|ined to |
|00000910| 66 6f 72 6d 20 6e 65 77 | 20 66 75 6e 63 74 69 6f |form new| functio|
|00000920| 6e 73 2e 0d 0a 00 0d 0b | 00 20 20 20 20 12 31 44 |ns......|. .1D|
|00000930| 65 66 69 6e 69 74 69 6f | 6e 20 6f 66 20 53 75 6d |efinitio|n of Sum|
|00000940| 2c 20 44 69 66 66 65 72 | 65 6e 63 65 2c 20 50 72 |, Differ|ence, Pr|
|00000950| 6f 64 75 63 74 2c 20 61 | 6e 64 20 51 75 6f 74 69 |oduct, a|nd Quoti|
|00000960| 65 6e 74 20 6f 66 20 46 | 75 6e 63 74 69 6f 6e 73 |ent of F|unctions|
|00000970| 12 30 0d 0a 00 0d 0b 00 | 4c 65 74 20 11 33 66 20 |.0......|Let .3f |
|00000980| 11 31 61 6e 64 20 11 33 | 67 20 11 31 62 65 20 74 |.1and .3|g .1be t|
|00000990| 77 6f 20 66 75 6e 63 74 | 69 6f 6e 73 20 77 69 74 |wo funct|ions wit|
|000009a0| 68 20 6f 76 65 72 6c 61 | 70 70 69 6e 67 20 64 6f |h overla|pping do|
|000009b0| 6d 61 69 6e 73 2e 20 20 | 54 68 65 6e 2c 20 66 6f |mains. |Then, fo|
|000009c0| 72 20 61 6c 6c 20 11 33 | 78 20 0d 0a 00 11 31 63 |r all .3|x ....1c|
|000009d0| 6f 6d 6d 6f 6e 20 74 6f | 20 62 6f 74 68 20 64 6f |ommon to| both do|
|000009e0| 6d 61 69 6e 73 2c 20 74 | 68 65 20 73 75 6d 2c 20 |mains, t|he sum, |
|000009f0| 64 69 66 66 65 72 65 6e | 63 65 2c 20 70 72 6f 64 |differen|ce, prod|
|00000a00| 75 63 74 2c 20 61 6e 64 | 20 71 75 6f 74 69 65 6e |uct, and| quotien|
|00000a10| 74 20 6f 66 20 11 33 66 | 20 11 31 61 6e 64 20 11 |t of .3f| .1and .|
|00000a20| 33 67 0d 0a 00 11 31 61 | 72 65 20 64 65 66 69 6e |3g....1a|re defin|
|00000a30| 65 64 20 61 73 20 66 6f | 6c 6c 6f 77 73 2e 0d 0a |ed as fo|llows...|
|00000a40| 00 0d 0a 00 31 2e 20 20 | 12 31 53 75 6d 12 30 3a |....1. |.1Sum.0:|
|00000a50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 28 11 33 | | (.3|
|00000a60| 66 20 11 31 2b 20 11 33 | 67 11 31 29 28 11 33 78 |f .1+ .3|g.1)(.3x|
|00000a70| 11 31 29 20 3d 20 11 33 | 66 11 31 28 11 33 78 11 |.1) = .3|f.1(.3x.|
|00000a80| 31 29 20 2b 20 11 33 67 | 11 31 28 11 33 78 11 31 |1) + .3g|.1(.3x.1|
|00000a90| 29 0d 0a 00 0d 0a 00 32 | 2e 20 20 12 31 44 69 66 |)......2|. .1Dif|
|00000aa0| 66 65 72 65 6e 63 65 12 | 30 3a 20 20 20 20 20 20 |ference.|0: |
|00000ab0| 28 11 33 66 20 11 31 2d | 20 11 33 67 11 31 29 28 |(.3f .1-| .3g.1)(|
|00000ac0| 11 33 78 11 31 29 20 3d | 20 11 33 66 11 31 28 11 |.3x.1) =| .3f.1(.|
|00000ad0| 33 78 11 31 29 20 2d 20 | 11 33 67 11 31 28 11 33 |3x.1) - |.3g.1(.3|
|00000ae0| 78 11 31 29 0d 0a 00 0d | 0a 00 33 2e 20 20 12 31 |x.1)....|..3. .1|
|00000af0| 50 72 6f 64 75 63 74 12 | 30 3a 20 20 20 20 20 20 |Product.|0: |
|00000b00| 20 20 20 28 11 33 66 67 | 11 31 29 28 11 33 78 11 | (.3fg|.1)(.3x.|
|00000b10| 31 29 20 3d 20 11 33 66 | 11 31 28 11 33 78 11 31 |1) = .3f|.1(.3x.1|
|00000b20| 29 20 11 34 2a 20 11 33 | 67 11 31 28 11 33 78 11 |) .4* .3|g.1(.3x.|
|00000b30| 31 29 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |1)......| |
|00000b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 28 | | .4(|
|00000b50| 11 33 66 11 34 29 20 20 | 20 20 20 20 11 33 66 11 |.3f.4) | .3f.|
|00000b60| 31 28 11 33 78 11 31 29 | 0d 0b 00 34 2e 20 20 12 |1(.3x.1)|...4. .|
|00000b70| 31 51 75 6f 74 69 65 6e | 74 12 30 3a 20 20 20 20 |1Quotien|t.0: |
|00000b80| 20 20 20 20 11 34 21 32 | 21 11 31 28 11 33 78 11 | .4!2|!.1(.3x.|
|00000b90| 31 29 20 3d 20 11 34 32 | 32 32 32 11 31 2c 20 20 |1) = .42|222.1, |
|00000ba0| 11 33 67 11 31 28 11 33 | 78 11 31 29 20 11 34 3d |.3g.1(.3|x.1) .4=|
|00000bb0| 20 11 31 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | .10... | |
|00000bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 39 11 | | .49.|
|00000bd0| 33 67 11 34 30 20 20 20 | 20 20 20 11 33 67 11 31 |3g.40 | .3g.1|
|00000be0| 28 11 33 78 11 31 29 0d | 0a 00 53 65 63 74 69 6f |(.3x.1).|..Sectio|
|00000bf0| 6e 20 32 2e 34 20 20 54 | 72 61 6e 73 6c 61 74 69 |n 2.4 T|ranslati|
|00000c00| 6f 6e 73 20 61 6e 64 20 | 43 6f 6d 62 69 6e 61 74 |ons and |Combinat|
|00000c10| 69 6f 6e 73 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |ions... | |
|00000c20| 20 20 20 20 20 20 20 20 | 20 12 31 44 65 66 69 6e | | .1Defin|
|00000c30| 69 74 69 6f 6e 20 6f 66 | 20 43 6f 6d 70 6f 73 69 |ition of| Composi|
|00000c40| 74 69 6f 6e 20 6f 66 20 | 54 77 6f 20 46 75 6e 63 |tion of |Two Func|
|00000c50| 74 69 6f 6e 73 12 30 0d | 0a 00 0d 0b 00 54 68 65 |tions.0.|.....The|
|00000c60| 20 12 31 63 6f 6d 70 6f | 73 69 74 69 6f 6e 12 30 | .1compo|sition.0|
|00000c70| 20 6f 66 20 74 68 65 20 | 66 75 6e 63 74 69 6f 6e | of the |function|
|00000c80| 20 11 33 66 20 11 31 77 | 69 74 68 20 74 68 65 20 | .3f .1w|ith the |
|00000c90| 66 75 6e 63 74 69 6f 6e | 20 11 33 67 20 11 31 69 |function| .3g .1i|
|00000ca0| 73 20 67 69 76 65 6e 20 | 62 79 20 0d 0a 00 0d 0b |s given |by .....|
|00000cb0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000cc0| 20 20 20 28 11 33 66 20 | 11 34 6f 20 11 33 67 11 | (.3f |.4o .3g.|
|00000cd0| 31 29 28 11 33 78 11 31 | 29 20 3d 20 11 33 66 11 |1)(.3x.1|) = .3f.|
|00000ce0| 31 28 11 33 67 11 31 28 | 11 33 78 11 31 29 29 2e |1(.3g.1(|.3x.1)).|
|00000cf0| 0d 0a 00 0d 0b 00 54 68 | 65 20 64 6f 6d 61 69 6e |......Th|e domain|
|00000d00| 20 6f 66 20 11 33 66 20 | 11 34 6f 20 11 33 67 20 | of .3f |.4o .3g |
|00000d10| 11 31 69 73 20 74 68 65 | 20 73 65 74 20 6f 66 20 |.1is the| set of |
|00000d20| 61 6c 6c 20 11 33 78 20 | 11 31 69 6e 20 74 68 65 |all .3x |.1in the|
|00000d30| 20 64 6f 6d 61 69 6e 20 | 6f 66 20 11 33 67 20 11 | domain |of .3g .|
|00000d40| 31 73 75 63 68 20 74 68 | 61 74 20 11 33 67 11 31 |1such th|at .3g.1|
|00000d50| 28 11 33 78 11 31 29 0d | 0a 00 69 73 20 69 6e 20 |(.3x.1).|..is in |
|00000d60| 74 68 65 20 64 6f 6d 61 | 69 6e 20 6f 66 20 11 33 |the doma|in of .3|
|00000d70| 66 11 31 2e 20 20 28 53 | 65 65 20 74 68 65 20 66 |f.1. (S|ee the f|
|00000d80| 69 67 75 72 65 20 62 65 | 6c 6f 77 2e 29 0d 0a 00 |igure be|low.)...|
|00000d90| 0d 0a 00 0d 0a 00 0d 0a | 00 14 74 33 2d 36 2d 32 |........|..t3-6-2|
|00000da0| 2e 6d 14 31 32 14 31 35 | 14 36 30 14 31 31 14 0d |.m.12.15|.60.11..|
|00000db0| 0a 00 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0a 00 3a 00 |........|......:.|
|00000dc0| 00 00 71 01 00 00 4d 2a | 00 00 10 00 00 00 00 00 |..q...M*|........|
|00000dd0| 00 00 73 32 2d 34 00 d5 | 01 00 00 69 02 00 00 4d |..s2-4..|...i...M|
|00000de0| 2a 00 00 ab 01 00 00 00 | 00 00 00 73 32 2d 34 2d |*.......|...s2-4-|
|00000df0| 31 00 68 04 00 00 62 01 | 00 00 4d 2a 00 00 3e 04 |1.h...b.|..M*..>.|
|00000e00| 00 00 00 00 00 00 73 32 | 2d 34 2d 32 00 f4 05 00 |......s2|-4-2....|
|00000e10| 00 3b 02 00 00 4d 2a 00 | 00 ca 05 00 00 00 00 00 |.;...M*.|........|
|00000e20| 00 73 32 2d 34 2d 33 00 | 59 08 00 00 91 03 00 00 |.s2-4-3.|Y.......|
|00000e30| 4d 2a 00 00 2f 08 00 00 | 00 00 00 00 73 32 2d 34 |M*../...|....s2-4|
|00000e40| 2d 34 00 14 0c 00 00 aa | 01 00 00 4d 2a 00 00 ea |-4......|...M*...|
|00000e50| 0b 00 00 00 00 00 00 73 | 32 2d 34 2d 35 00 |.......s|2-4-5. |
+--------+-------------------------+-------------------------+--------+--------+